IMAGE COMPRESSION USING
FOURIER TRANSFORMS

Kevin Cherry

May 2, 2008

Math 4325



Compression is a technique for storing files in less space than would normally be
required. This in general, has two major purposes: making file transfer over various
protocols (ftp, http, etc.) quicker and for saving storage space on hard drives. The
normal downsides, however, are that images might not be able to be decompressed
exactly as they were originally (lossy vs. lossless which will be discussed later), the
compressing and decompressing process takes time (a time/space tradeoff as is often
found in computers and computing technologies), and compatibility as one or more file
types need to be made for each of the compression techniques.

The most common image compression formats include GIF, JPG (which includes
JpPg, .jpeyg, .jpe, .jp2, .j2c, with containers: .jif, .jfif, and .jfi) and PNG. Picking the correct
compression format for an image depends on the type of image you want to compress.
The GIF format works ideally for images with less than 256 distinct colors and those
composed of basic geometrical shapes and cartoon-like drawings. Both PNG and GIF
support transparency by selecting an unused color and marking that as the transparent
color. JPG works best on photographic images and/or those with lots of distinct colors
and details. GIF and PNG are both lossless compression methods meaning that these
formats can be made to hold all data necessary to be decompressed into an exact
replica of the original image. JPG, however, is considered lossy and even on the
highest settings; it is incapable of restoring the exact original image.

How compression works varies greatly. GIF compression in its simplest form is
nothing more than noting the repetition of adjacent pixels of the same color. For

example, if we had an image whose top line of pixels were all white, and the width of the



image was 100, instead of storing the hex value #FFFFFF 100 times, we could just write
100#FFFFFF, meaning that the next 100 pixels are white. This is why simple images
are ideal for GIF compression, but complex ones (where the pixels change colors
frequently) aren't as effective. JPG compression is a lot more complex and involves the
use of Discrete Cosine Transforms (DCT) and Discrete Fourier Transforms (DFT). | will
cover these in detalil a little later on, but first it is important to view the steps that take
place before this is used. The best way to understand JPG compression is to go step-
by-step through the methods used.

The first part of JPG compression is known as color space transformation. It was
found that the human eye can detect somewhat minor changes in the brightness of an
image however small changes in color aren't as noticeable. The color format YCbCr, in
which Y stands for brightness, Cb stands for something known as chrominance blue,
and Cr is for chrominance red, is used in place of other formats such as RGB or HSV.
Since the human eye is less accepting of brightness changes, the Y value doesn't get
touched. Instead Cb and Cr are downsampled, that is, spatial resolution is reduced in
these values. Next the entire image is split into 8x8 pixel blocks and compression
continues on each block independently.

This is where Discrete Fourier Transform (DFT) and Discrete Cosine Transform
(DCT) come in. From my understanding you can use either one, however DCT is more
recommended. | will start with an explanation on using DFT on an image. In FIGURE 1 a
random 2x2 image was given as f. Normally this would be a 8x8 made from the block
splitting stage earlier, but for sake of simplicity, this 2x2 example will work. The color

values come from the fact that 256 permutations are possible with 8 bits (where each bit



is a 1 or 0) and since the computer works in chunks of bits called bytes, and since 8 bits
is a byte, each color can be represented using 1 byte. In the case of f, 255 represents
pure white and O represents pure black. The numbers in between represent the amount
of gray in the color with the higher values being lighter. Using the analysis equation, we
are able to get the Fourier Transform of this image as shown in the equations that follow
FIGURE 1. Using DCTs are a little more complicated. The first thing we must do is to
subtract 128 (half of 256 as 256 is the current maximum for all values) from each of the
original values. This changes the values to be centered on zero as opposed to all non-
negative values. Next we apply the formula found in FIGURE 3 to get G (the Fourier
Transform of g, our original 8x8 block). Since this could yield fractional values, we need
to round each value to the nearest integer. In the result the top left value is known as
our DC coefficient and all other values in the block are known as AC coefficients.

The next step is known as quantization. Using a common quantization matrix like
the one in FIGURE 4, we apply the formula given in FIGURE 4 to obtain B. This step allows
for the values found in G (which is now B) to be smaller and therefore require fewer bits
to be stored by the computer. This step is mostly responsible for JPG not being able to
represent the image exactly and is the cause of artifacts in the image that show up at
lower qualities. This is due to the rounding that takes place.

The final step is called entropy coding. For this step we first arrange the numbers
sequentially from the matrix using a "zigzag" pattern as shown in FIGURE 5. After this
special code words are used to stand for certain patterns in the list of numbers. For

example, EOB is used to mean that the rest of the list of numbers contains only zeros.



Using these code words instead of writing out the actual numbers saves a good bit (no
pun intended) of space.

Just how good the compressed image appears depends on a quality/space
tradeoff. The higher the quality, the less compressed the image is. The lower the
quality, the more compressed but more inaccurate the image is. Due to its lossy nature,
JPG will never exactly represent the uncompressed image, however in most images it
can get quite close even at qualities of about 70%. The main degradation of GIF images
comes into play when you decrease the number of colors GIF is allowed to use to
display the image. The smaller the color palette is the more detail is lost.

JPG compression wouldn't be possible without the use of Fourier and Cosine
Transforms. Because of these, it is one of the best compression methods for images.
Without compression, there is a good chance image use among web pages would not
be as common. Compression allows us to send data even over a slower connection in a

feasible amount of time and to make better use of our hard drive space.



36.25 56.25

-71.25 -41.250m-112.5

fcz Fer Per

FIGURE 1

DFT values for a sample 2x2 image given by f.

| N ik,
f(a,b) = Nz F(k,)e"™""N"N Synthesis Equation
k=0 1=0
N-1
1 —EmiE
F(k1) = v Z P(k,b)e "N Analysis Equation
b=0

-1
1
where P(k,b) = v Z fla, b)e *™
a=0

30

Note: The analysis equation is normally broken up like this for computational efficiency.
This reduces time complexity as we can calculate P(k,b) first and then simply look up
those values when computing F(k,l). This turns the equation into two separate loops as

opposed to two nested loops.



Work:
1 1 1
P(0,0) = EZ_D £(a,0) = 5 (30 +255) = 1425

1
P(0,1) = %Z fla,1) = %(n+eu] =30
a=0

1
1 . 1 . .
P(l,l:l:] = EZ f(ﬂ,ﬂ]E_mE — E[Eﬂ_'_ EESE—RE) =154 1275~ = _1125
a=10
1
1 : 1 _ _
P(11) = EZ fla,1)e™™ = E[ﬂ +60e™™) =30e™™ = —30
a=0

1
1 1
F(0,0) = EZ P(0,b) = 5 (14255 +30) = 86.25
b=0

1
1 . 1 .
F(0,1) = EZ P(0,b)e™™P = E[142.5 +30e™™) =56.25
b=0

1
1 1
F(1,0) = EZ P(1,) = 5 (1125 - 30) = —71.25
b=0

1
1 . 1 .
F(1,1) = EZ P(1,b)e ™ = E[—112.5 —30e™™) = —41.25
h=0



~N O O A W N - O

==t

FIGURE 2

DCT Transforms used for finding horizontal and vertical
spatial frequency, i.e. the measure of how often the
structure repeats per unit distance, values for u and v
respectively. In this case the unit distance is one square in
this 8x8 grid.



Gy = a(a(v) i Z?: G,y COS E (x + %) u] COS E (y + %) v]

x=0v=0

FIGURE 3

where:
u = horizontal spatial frequency of FIGURE 2
v = vertical spatial frequency of FIGURE 2

-

1

é, n=>~0
a, (n) = 1

2

g’ else

. = Pixel value at coordinates x,y
G, = DCT coefficient at coordinates x,y



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 387 30 62
Is 22 37 56 65 109 103 77
24 35 55 64 31 104 113 92
49 64 T8 37 103 121 120 101
72 92 95 83 112 100 103 99

FIGURE 4

Common quantization matrix used for scaling values of G.
This uses the formula:

G; i
B; = round (}— forO0<jk <7
ik
Where: Q is a common quantization matrix like FIGURE 4.

G is our Transform from the previous step.



%

|
g
Z

/|

:

s
292h)
ﬂﬂ.

ﬂ
a
%

7
77

Y

d
4




Bibliography

http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm

http://www.fags.org/fags/jpeg-faq/partl/

http://www.pagetutor.com/image compression/index.html

http://www.pagetutor.com/about gifs/index.html

http://en.wikipedia.org/wiki/JPEG#Discrete cosine transform

http://blogs.msdn.com/devdev/archive/2006/04/12/575384.aspx



http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
http://www.faqs.org/faqs/jpeg-faq/part1/
http://www.pagetutor.com/image_compression/index.html
http://www.pagetutor.com/about_gifs/index.html
http://en.wikipedia.org/wiki/JPEG#Discrete_cosine_transform
http://blogs.msdn.com/devdev/archive/2006/04/12/575384.aspx

